You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

428 lines
18 KiB

// SimplexNoise for C#
// Author: Heikki Törmälä
//This is free and unencumbered software released into the public domain.
//Anyone is free to copy, modify, publish, use, compile, sell, or
//distribute this software, either in source code form or as a compiled
//binary, for any purpose, commercial or non-commercial, and by any
//means.
//In jurisdictions that recognize copyright laws, the author or authors
//of this software dedicate any and all copyright interest in the
//software to the public domain. We make this dedication for the benefit
//of the public at large and to the detriment of our heirs and
//successors. We intend this dedication to be an overt act of
//relinquishment in perpetuity of all present and future rights to this
//software under copyright law.
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
//EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
//MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
//OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
//ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
//OTHER DEALINGS IN THE SOFTWARE.
//For more information, please refer to <http://unlicense.org/>
using UnityEngine;
namespace SimplexNoise
{
/// <summary>
/// Implementation of the Perlin simplex noise, an improved Perlin noise algorithm.
/// Based loosely on SimplexNoise1234 by Stefan Gustavson <http://staffwww.itn.liu.se/~stegu/aqsis/aqsis-newnoise/>
///
/// </summary>
public class Noise
{
/// <summary>
/// 1D simplex noise
/// </summary>
/// <param name="x"></param>
/// <returns></returns>
public static float Generate(float x)
{
int i0 = FastFloor(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float n0, n1;
float t0 = 1.0f - x0*x0;
t0 *= t0;
n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);
float t1 = 1.0f - x1*x1;
t1 *= t1;
n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
/// <summary>
/// 2D simplex noise
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns></returns>
public static float Generate(float x, float y)
{
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x+y)*F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
float t = (float)(i+j)*G2;
float X0 = i-t; // Unskew the cell origin back to (x,y) space
float Y0 = j-t;
float x0 = x-X0; // The x,y distances from the cell origin
float y0 = y-Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i % 256;
int jj = j % 256;
// Calculate the contribution from the three corners
float t0 = 0.5f - x0*x0-y0*y0;
if(t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii+perm[jj]], x0, y0);
}
float t1 = 0.5f - x1*x1-y1*y1;
if(t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1]], x1, y1);
}
float t2 = 0.5f - x2*x2-y2*y2;
if(t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii+1+perm[jj+1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
public static float Generate(float x, float y, float z)
{
// Simple skewing factors for the 3D case
const float F3 = 0.333333333f;
const float G3 = 0.166666667f;
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
float xs = x+s;
float ys = y+s;
float zs = z+s;
int i = FastFloor(xs);
int j = FastFloor(ys);
int k = FastFloor(zs);
float t = (float)(i+j+k)*G3;
float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j-t;
float Z0 = k-t;
float x0 = x-X0; // The x,y,z distances from the cell origin
float y0 = y-Y0;
float z0 = z-Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
}
else { // x0<y0
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
float y1 = y0 - j1 + G3;
float z1 = z0 - k1 + G3;
float x2 = x0 - i2 + 2.0f*G3; // Offsets for third corner in (x,y,z) coords
float y2 = y0 - j2 + 2.0f*G3;
float z2 = z0 - k2 + 2.0f*G3;
float x3 = x0 - 1.0f + 3.0f*G3; // Offsets for last corner in (x,y,z) coords
float y3 = y0 - 1.0f + 3.0f*G3;
float z3 = z0 - 1.0f + 3.0f*G3;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = Mod(i, 256);
int jj = Mod(j, 256);
int kk = Mod(k, 256);
// Calculate the contribution from the four corners
float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
if(t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
}
float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
if(t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
}
float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
if(t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
}
float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
if(t3<0.0f) n3 = 0.0f;
else {
t3 *= t3;
n3 = t3 * t3 * grad(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
}
public static byte[] perm = new byte[512] { 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
private static int FastFloor(float x)
{
return (x > 0) ? ((int)x) : (((int)x) - 1);
}
private static int Mod(int x, int m)
{
int a = x % m;
return a < 0 ? a + m : a;
}
private static float grad( int hash, float x )
{
int h = hash & 15;
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
return ( grad * x ); // Multiply the gradient with the distance
}
private static float grad( int hash, float x, float y )
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h<4 ? x : y; // into 8 simple gradient directions,
float v = h<4 ? y : x; // and compute the dot product with (x,y).
return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -2.0f*v : 2.0f*v);
}
private static float grad( int hash, float x, float y , float z ) {
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h<8 ? x : y; // gradient directions, and compute dot product.
float v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15
return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -v : v);
}
private static float grad( int hash, float x, float y, float z, float t ) {
int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
float u = h<24 ? x : y; // gradient directions, and compute dot product.
float v = h<16 ? y : z;
float w = h<8 ? z : t;
return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -v : v) + ((h&4) != 0 ? -w : w);
}
private static Vector3 floor(Vector3 v)
{
return new Vector3(Mathf.Floor(v.x), Mathf.Floor(v.y), Mathf.Floor(v.z));
}
private static Vector4 floor(Vector4 v)
{
return new Vector4(Mathf.Floor(v.x), Mathf.Floor(v.y), Mathf.Floor(v.z), Mathf.Floor(v.w));
}
private static Vector3 step(Vector3 a, Vector3 b)
{
float x = a.x < b.x ? 0.0f : 1.0f;
float y = a.y < b.y ? 0.0f : 1.0f;
float z = a.z < b.z ? 0.0f : 1.0f;
return new Vector3(x, y, z);
}
private static Vector3 mod289(Vector3 x)
{
return x - floor(x / 289.0f) * 289.0f;
}
private static Vector4 mod289(Vector4 x)
{
return x - floor(x / 289.0f) * 289.0f;
}
private static Vector4 permute(Vector4 x)
{
return mod289(Vector4.Scale(x * 34.0f + Vector4.one, x));
}
private static Vector4 taylorInvSqrt(Vector4 r)
{
return Vector4.one * 1.79284291400159f - r * 0.85373472095314f;
}
private static Vector4 abs(Vector4 v)
{
return new Vector4(Mathf.Abs(v.x), Mathf.Abs(v.y), Mathf.Abs(v.z), Mathf.Abs(v.w));
}
public static Vector3 snoise_grad(Vector3 v)
{
Vector2 C = new Vector2(1.0f / 6.0f, 1.0f / 3.0f);
float vt = 0.0f;
// First corner
vt = Vector3.Dot(v, new Vector3(C.y, C.y, C.y));
Vector3 i = floor(v + new Vector3(vt, vt, vt));
vt = Vector3.Dot(i, new Vector3(C.x, C.x, C.x));
Vector3 x0 = v - i + new Vector3(vt, vt, vt);
// Other corners
Vector3 g = step(new Vector3(x0.y, x0.z, x0.x), new Vector3(x0.x, x0.y, x0.z));
Vector3 l = Vector3.one - g;
Vector3 i1 = Vector3.Min(g, new Vector3(l.z, l.x, l.y));
Vector3 i2 = Vector3.Max(g, new Vector3(l.z, l.x, l.y));
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
Vector3 x1 = x0 - i1 + Vector3.one * C.x;
Vector3 x2 = x0 - i2 + Vector3.one * C.y;
Vector3 x3 = x0 - Vector3.one * 0.5f;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
Vector4 p =
permute(permute(permute(Vector4.one * i.z + new Vector4(0.0f, i1.z, i2.z, 1.0f))
+ Vector4.one * i.y + new Vector4(0.0f, i1.y, i2.y, 1.0f))
+ Vector4.one * i.x + new Vector4(0.0f, i1.x, i2.x, 1.0f));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
Vector4 j = p - 49.0f * floor(p / 49.0f); // mod(p,7*7)
Vector4 x_ = floor(j / 7.0f);
Vector4 y_ = floor(j - 7.0f * x_); // mod(j,N)
Vector4 x = (x_ * 2.0f + Vector4.one * 0.5f) / 7.0f - Vector4.one;
Vector4 y = (y_ * 2.0f + Vector4.one * 0.5f) / 7.0f - Vector4.one;
Vector4 h = Vector4.one - abs(x) - abs(y);
Vector4 b0 = new Vector4(x.x, x.y, y.x, y.y);
Vector4 b1 = new Vector4(x.z, x.w, y.z, y.w);
//vec4 s0 = vec4(lessThan(b0, 0.0)) * 2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1, 0.0)) * 2.0 - 1.0;
Vector4 s0 = floor(b0) * 2.0f + Vector4.one;
Vector4 s1 = floor(b1) * 2.0f + Vector4.one;
Vector4 sh = -step(h, Vector4.zero);
Vector4 a0 = new Vector4(b0.x, b0.z, b0.y, b0.w) + Vector4.Scale(new Vector4(s0.x, s0.z, s0.y, s0.w), new Vector4(sh.x, sh.x, sh.y, sh.y));
Vector4 a1 = new Vector4(b1.x, b1.z, b1.y, b1.w) + Vector4.Scale(new Vector4(s1.x, s1.z, s1.y, s1.w), new Vector4(sh.z, sh.z, sh.w, sh.w));
Vector3 g0 = new Vector3(a0.x, a0.y, h.x);
Vector3 g1 = new Vector3(a0.z, a0.w, h.y);
Vector3 g2 = new Vector3(a1.x, a1.y, h.z);
Vector3 g3 = new Vector3(a1.z, a1.w, h.w);
// Normalise gradients
Vector4 norm = taylorInvSqrt(new Vector4(Vector3.Dot(g0, g0), Vector3.Dot(g1, g1), Vector3.Dot(g2, g2), Vector3.Dot(g3, g3)));
g0 *= norm.x;
g1 *= norm.y;
g2 *= norm.z;
g3 *= norm.w;
// Compute gradient of noise function at P
Vector4 m = Vector4.Max(Vector4.one * 0.6f - new Vector4(Vector3.Dot(x0, x0), Vector3.Dot(x1, x1), Vector3.Dot(x2, x2), Vector3.Dot(x3, x3)), Vector4.zero);
Vector4 m2 = Vector4.Scale(m, m);
Vector4 m3 = Vector4.Scale(m2, m);
Vector4 m4 = Vector4.Scale(m2, m2);
Vector3 grad =
-6.0f * m3.x * x0 * Vector3.Dot(x0, g0) + m4.x * g0 +
-6.0f * m3.y * x1 * Vector3.Dot(x1, g1) + m4.y * g1 +
-6.0f * m3.z * x2 * Vector3.Dot(x2, g2) + m4.z * g2 +
-6.0f * m3.w * x3 * Vector3.Dot(x3, g3) + m4.w * g3;
return 42.0f * grad;
}
}
}