main
reng 5 months ago
parent 92bf193f1a
commit 6a3144e035
  1. 1
      .gitignore
  2. 4
      img2img.py
  3. 12
      main.py

1
.gitignore vendored

@ -2,3 +2,4 @@
engines
/__pycache__
/utils/__pycache__
/models

@ -106,8 +106,8 @@ class Pipeline:
)
def predict(self, image: Image.Image, params: "Pipeline.InputParams") -> Image.Image:
# image_tensor = self.stream.preprocess_image(image)
image_tensor = self.stream.preprocess_image(image)
# output_image = self.stream(image=image_tensor, prompt=params.prompt)
output_image = self.stream(image=image, prompt=params.prompt)
output_image = self.stream(image=image_tensor, prompt=params.prompt)
return output_image

@ -5,15 +5,15 @@ import torch
from PIL import Image
import numpy as np
import SpoutGL
from OpenGL.GL import GL_RGBA
from OpenGL.GL import GL_RGBA, GL_BGRA
import time
import img2img
from multiprocessing import Queue
def main():
TARGET_FPS = 60
SPOUT_RECEIVER_NAME = "Spout DX11 Sender"
SPOUT_SENDER_NAME = "Output - StreamDiffusion"
SPOUT_RECEIVER_NAME = "NoiseSender"
SPOUT_SENDER_NAME = "StreamDiffusionSender"
WIDTH = 512
HEIGHT = 512
PROMPT = "a beautiful landscape painting, trending on artstation, 8k, hyperrealistic"
@ -82,7 +82,7 @@ def main():
continue
image_rgb_array = image_bgra[:, :, [2,1,0]]
# image_rgb_array = image_rgb_array.astype(np.float32) / 255.0
image_rgb_array = (image_rgb_array+ 1.0 )/2.0
input_image = Image.fromarray(image_rgb_array, 'RGB')
# input_image.save("debug_input.png")
@ -100,7 +100,9 @@ def main():
# output_rgba_array = np.array(output_image.convert("RGBA"))
# output_bgra_array = output_rgba_array[:, :, [2, 1, 0, 3]]
# buffer = np.ascontiguousarray(output_bgra_array)
output_bgr_array = np.array(output_image, dtype=np.uint8)[:, :, ::-1]
# output_bgr_array = np.array(output_image, dtype=np.uint8)[:, :, ::-1]
output_bgr_array=np.array(output_image)
output_bgra_array = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
output_bgra_array[:, :, :3] = output_bgr_array
output_bgra_array[:, :, 3] = 255

Loading…
Cancel
Save