You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

131 lines
4.8 KiB

from fastapi import FastAPI
from pydantic import BaseModel
import datetime
import torch
from PIL import Image
import numpy as np
import SpoutGL
from OpenGL.GL import GL_RGBA
import time
import img2img
from multiprocessing import Queue
def main():
TARGET_FPS = 60
SPOUT_RECEIVER_NAME = "Spout DX11 Sender"
SPOUT_SENDER_NAME = "Output - StreamDiffusion"
WIDTH = 512
HEIGHT = 512
PROMPT = "a beautiful landscape painting, trending on artstation, 8k, hyperrealistic"
timestamp = datetime.datetime.now()
fps = 30.0
prompt_queue = Queue()
print("Initializing StreamDiffusion pipeline...")
global pipeline
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.float16
pipeline = img2img.Pipeline(device, torch_dtype)
app = FastAPI()
@app.get("/health")
def read_root():
return {"status": "ok"}
class PromptUpdate(BaseModel):
prompt: str
@app.post("/api/update/prompt")
async def update_prompt(update: PromptUpdate):
global PROMPT
PROMPT = update.prompt
prompt_queue.put(PROMPT)
print(f"Prompt updated to: {PROMPT}")
return {"message": "Prompt updated successfully", "new_prompt": PROMPT}
print("Pipeline initialized.")
except Exception as e:
print(f"Error initializing StreamDiffusion pipeline: {e}")
return
print(f"Initializing Spout receiver for '{SPOUT_RECEIVER_NAME}'...")
spout_receiver = SpoutGL.SpoutReceiver()
spout_receiver.setReceiverName(SPOUT_RECEIVER_NAME)
print(f"Initializing Spout sender as '{SPOUT_SENDER_NAME}'...")
spout_sender = SpoutGL.SpoutSender()
spout_sender.setSenderName(SPOUT_SENDER_NAME)
image_bgra = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
import uvicorn
import threading
config = uvicorn.Config(app, host="0.0.0.0", port=34800, log_level="info")
server = uvicorn.Server(config)
threading.Thread(target=server.run, daemon=True).start()
print("FastAPI server started at http://0.0.0.0:34800")
try:
print("Starting main loop. Press Ctrl+C to exit.")
while True:
received = spout_receiver.receiveImage(image_bgra, GL_RGBA, False, 0)
# print(f"Received: {received}, Connected: {spout_receiver.isConnected()}, Updated: {spout_receiver.isUpdated()}, Empty: {SpoutGL.helpers.isBufferEmpty(image_bgra)}")
if received:
if spout_receiver.isUpdated():
continue
if spout_receiver.isConnected() and SpoutGL.helpers.isBufferEmpty(image_bgra):
continue
image_rgb_array = image_bgra[:, :, [2,1,0]]
# image_rgb_array = image_rgb_array.astype(np.float32) / 255.0
input_image = Image.fromarray(image_rgb_array, 'RGB')
# input_image.save("debug_input.png")
if not prompt_queue.empty():
new_prompt = prompt_queue.get(block=False)
if new_prompt:
print(f"Received new prompt from queue: {new_prompt}")
PROMPT = new_prompt
# print(f"current prompt: {PROMPT}")
params = img2img.Pipeline.InputParams(prompt=PROMPT)
output_image = pipeline.predict(image=input_image, params=params)
# output_image.save("debug_output.png")
# output_rgba_array = np.array(output_image.convert("RGBA"))
# output_bgra_array = output_rgba_array[:, :, [2, 1, 0, 3]]
# buffer = np.ascontiguousarray(output_bgra_array)
output_bgr_array = np.array(output_image, dtype=np.uint8)[:, :, ::-1]
output_bgra_array = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
output_bgra_array[:, :, :3] = output_bgr_array
output_bgra_array[:, :, 3] = 255
buffer = output_bgra_array
spout_sender.sendImage(buffer, WIDTH, HEIGHT, GL_RGBA, False, 0)
# timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
dt = (datetime.datetime.now() - timestamp).total_seconds()
t = 0.05
fps = fps * t + 1 / dt * (1 - t)
timestamp = datetime.datetime.now()
print("\033[92m[ STREAM DIFFUSION ]\033[0m " + f"Frame processed and sent to Spout: {fps:2f}", end="\r", flush=True)
else:
time.sleep(1. / TARGET_FPS)
except KeyboardInterrupt:
print("\nExiting...")
finally:
print("Releasing Spout resources.")
spout_receiver.releaseReceiver()
spout_sender.releaseSender()
if __name__ == "__main__":
main()